

Clustering and Elastic Net Logistic Regression as Support Tools for Honeybee (Apis mellifera) Colonies Health Diagnosis

Daniel A. Silva, Antonio Rafael Braga, Juvêncio S. Nobre, Danielo G. Gomes

Bee studied

•00

Figure: European honey bee (Apis mellifera) Available in: http://apicultura.to.gov.br/wp-content/uploads/2018/04/Apis-mellifera 1860.jpg

Why are bees important?

Introduction

Figure: Bee benefits

Available in: https://ichef.bbci.co.uk/images/ic/1280xn/p07crcfm.jpg

Inside the Hive

000

Figure: Hive structure Available in: https://ichef.bbci.co.uk/images/ic/1280xn/p07crcfm.ipg

In loco inspection causes stress to bees

Figure: Inspection in a Bee Colony
Available in: https://static.independent.co.uk/s3fs-public/thumbnails/image/2018/07/26/13/british-beekeepers-1.jpg

Beehive fragility in winter

Total US managed honey bee colonies Loss Estimates

Figure: Annual loss in (%) of colonies in the United States in 2006-2016 Available in: https://beeinformed.org/wp-content/uploads/2016/11/BIP-2015-2016-Loss-Chart.png

Data collect

- 1. Internal sensors via the IoT (Internet of Things);
- 2. External sensors via US National Weather Service data;
- 3. In-loco Inspection via Healthy Colonie Checklist (HCC).

Internal sensors

- 1. Cluster and hive temperature
- Cluster and beehive humidity
- 3. Beehive Weight

External sensors

- 1. Temperature
- 2. Dew Point
- 3. Sky Condition
- 4. Pressure
- 5. Precipitacion
- 6. Wind Speed and Direction

Figure: Illustration of a weather station.

Inspection Factors

In-loco Inspection via HCC

- 1. Brood
- 2. Bees
- 3. Queen
- 4. Food
- Stressors
- 6. Space

Figure: Healthy Colony Checklist (HCC).

Algorithm 1 - Getting Complete Data

The model chosen for algorithm 1 was the Random Forest, as it is robust in class imbalance problems.

Algorithm 2 - Getting new labels with Clustering

The clustering method chosen was CLARA (Clustering Large Applications), as it works with large data sets using resampling.

Algorithm 3 - Final Model

The model chosen to classify the new data set was the Elastic Net Logistic Regression, dealing with multicollinearity and performing feature selection.

Random Forest Model - Algorithm 1

- Hyperparameters by 10 fold 5-repeatedCV
 - 1. mtry (#Randomly Selected Predictors) = 5
 - 2. splitrule (Splitting Rule) = gini
 - 3. min.node.size (Minimal Node Size) = 1
- Test Data Confusion Matrix

			Predicted				
		1	2	3	4	5	6
	1	82	1	4	0	1	0
	2	4	171	2	1	4	0
Real	3	0	1	88	2	5	0
œ	4	0	7	10	837	40	24
	5	1	13	25	140	2368	187
	6	2	3	5	44	104	1053

Random Forest Model - Algorithm 1

- Accuracy = 0,8795
- Others statistics

	Precision	Recall	F1
Class: 1	0,93	0,92	0,93
Class: 2	0,94	0,87	0,90
Class: 3	0,92	0,66	0,77
Class: 4	0,91	0,82	0,86
Class: 5	0,87	0,94	0,90
Class: 6	0,87	0,83	0,85

CLARA Clustering - Algorithm 2

 Choosing the best number of clusters by the Silhouett and Calinski-Harabasz indices

CLARA Clustering - Algorithm 2

Validation of cluster medoids

	Turn Day	Brood Temperature	Brood Humidity	Hive Temperature	Hive Humidity
1º Cluster	day	29,04	62,00	27,71	61,00
2º Cluster	day	33,99	69,00	34,14	69,00

	Weight	External Temperature	Dew Point	Wind Direction	Wind Speed
1º Cluster	22,66	2,06	1,83	150,00	2,60
2º Cluster	33,90	23,90	17,80	90.00	26,00

Elastic Net Logistic Regression - Algorithm 3

- Hyperparameters by 10 fold 5-repeatedCV
 - 1. alpha (Mixing Parameter) = 0,27
 - 2. lambda (Regularization Parameter) = 0,04
- Test Data Confusion Matrix

		Pred	Predicted		
		0	1		
leal	0	2221	5		
ď	1	4	3000		

D 11 1

Elastic Net Logistic Regression - Algorithm 3

- Accuracy = 0.9983
- Precision = 0.9978
- Recall = 0,9982
- F1 = 0.9980

Conclusions

- 1. Real-time monitoring proposal.
- 2. Uses data in the winter period.
- 3. It can avoid "unnecessary" inspections.
- 4. Scalable application by resampling clustering.
- 5. Highly discriminative model (acc = 99,83%)

Future works

- 1. Use of semi-supervised techniques;
- 2. Application to a larger data set;
- 3. Application in Brazilian Beehives;

References I

- Calinski, Tadeusz and Jerzy Harabasz (1974). "A dendrite method for cluster analysis". In: *Communications in Statistics-theory and Methods* 3.1, pp. 1–27.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning Data Mining, Inference, and Prediction.
- Kaufman, Leonard and Peter Rousseeuw (1990). "Finding Groups in Data: An Introduction to Cluster Analysis". In:
- Rousseeuw, Peter (Nov. 1987). "Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis". In: *J. Comput. Appl. Math.* 20.1, pp. 53–65. ISSN: 0377-0427.
- Zou, Hui and Trevor Hastie (2005). "Regularization and variable selection via the Elastic Net". In: *Journal of the Royal Statistical Society, Series B* 67, pp. 301–320.

Thank you